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The Bullwhip effect in water demand management:

taming it through an artificial neural networks-based

system

Borja Ponte, Laura Ruano, Raúl Pino and David de la Fuente
ABSTRACT
The Bullwhip effect (BE) refers to the amplification of the variance of orders and inventories along the

supply chain as they move away from the customer. This is considered as the main cause of

inefficiencies in the management of a traditional supply chain. However, the BE is not relevant in the

classic system of water distribution, based on long-term supply management. Nevertheless, current

circumstances have drawn a new context, which has introduced the concept of water demand

management, in which efficiency and sustainability are of great importance. Then, the time horizon

of management has decreased enormously and the supply time takes on an important role.

Therefore, the BE must be considered, as it significantly raises the costs of management. On the one

hand, this paper brings evidence that the BE appears in a system of real-time management of water

demand. On the other hand, it proposes the application of artificial intelligence techniques for its

reduction. More specifically, an advanced forecasting system based on artificial neural networks has

been used. The BE is heavily damped.
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INTRODUCTION
The concept of Bullwhip effect (BE) emerged in the early

1990s in some large companies, when the new competitive

context conceded strategic importance to supply chain man-

agement (SCM). Some businesses began to understand SCM

as a source of competitive advantages and studied it in

detail, trying to optimize its performance. At that time, Proc-

ter and Gamble realized that the purchase orders received in

one of its flagship products, Pampers diapers, fluctuated sig-

nificantly, while the product demand in the retailer was

almost constant. They also found out that the variability in

orders transmitted to their suppliers were much higher. It

was called the BE (Lee et al. ).

The growing importance of logistics in the doubtful

environment currently faced by businesses has prompted the

development of this concept, which is considered to be the

main cause of inefficiencies in SCM (Disney et al. ). For

this reason, various supply chains have focused on reducing
the BE, with the aim of minimizing the derivatives overruns.

In contrast, in some particular supply chains, this phenom-

enon has not been relevant and it has not been widely

studied. The water supply system is one of them.

Nevertheless, the perspective of municipal policies

about water management has changed significantly over

the last two decades, mainly due to the pressures generated

by population growth and industrialization. Hence, the con-

cept of water demand management (WDM) has developed

significantly. Brooks () proposed a current definition

of WDM with five components: (1) reducing the quantity

or quality of water required to accomplish a specific task;

(2) adjusting the nature of the task so it can be accomplished

with less water or lower quality water; (3) reducing losses in

movement from source through use to disposal; (4) shifting

time of use to off-peak periods; and (5) increasing the ability

of the system to operate during droughts.
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This burgeoning concern over efficiency and sustainabil-

ity around WDM (Charlesworth & Adeyeye ) has led to

a reduction in the time horizon. Some years ago, long-term

forecasting was enough for the design of the system and

the development of plans (among others, Willsie & Pratt

()). However, nowadays, short-term forecasts are

required for attaining high efficiency in operation and man-

agement (among others, Gato et al. ()). Herrera et al.

() defend that the ready availability of hourly predictions

of water demand is crucial due to three main reasons: (1) it

allows to determine the optimal regulation and pumping sys-

tems to meet the predicted demand, which promotes energy

efficiency (operative point of view); (2) it allows to combine

water sources in the most appropriate way to achieve a

preset standard in the supply water (quality point of view);

and (3) it allows to detect failures and network losses

through the comparison of the actual and expected flow

(vulnerability point of view). It can be called real-time

WDM.

In a long-term WDM system, the BE does not arise. If

the time horizon is very long, the supply time becomes tri-

vial and does not determine the performance of the

replenishment policy. However, reducing this time horizon

introduces in the study the need to consider the supply

time, and therefore the menace of BE surges. It must be

taken into account in order to avoid the negative conse-

quences that it can have on the supply system. Thereby,

one of the main objectives of this paper is to bring evidence

via simulation of the appearance of the BE in a real-time

WDM.

Furthermore, this work proposes a solution to the ident-

ified problem, based on the application of artificial

intelligence techniques in forecasting the hourly water

demand. More specifically, an advanced forecasting

system, whose core is an artificial neural network (ANN),

has been developed. This methodology has been widely

used in the forecasting of series of a similar nature, as the

short-term electricity load (see Hippert et al. () for a

review). Herrera et al. () showed that predictive

models, among which ANNs are included, provide great

performance in forecasting the hourly water consumption.

This research has tried to reduce the error even further by

developing a double-loop system that chooses at all times

the optimal network structure (both input variables and
hidden neurons). Therefore, the second goal of this paper

is to demonstrate that these smart tools can cause a large

decrease in the BE generated in the water distribution

system and, consequently, it can lead to an improvement

in the management.
BACKGROUND: THE BE IN SUPPLY CHAINS

Although research on the BE was strengthened two decades

ago when large companies looked at the problem, Forrester

() long before noted the amplification of demand varia-

bility along a generic supply chain through a simulation

model. Thereby, many authors express mathematically the

BE generated at level n of a linear supply chain (BEn) as

the quotient of the variance of the orders issued to the

upper level supply chain (σ2
POE

n
) and the orders received

from the lower level of the same (σ2
POR

n
). As this metric

only evaluates the output variance compared with the

input variance, it should be supplemented by another one

that provides the variation in the level of inventories (i.e.

the structure that causes the above variation). Therefore,

some authors (e.g. Disney & Towill ) propose an

alternative metric of the quotient of the variance of the

stock (σ2
STOCK

n
) and the variance of the demand (σ2

POR
n
). It

can be named the alternative bullwhip effect (ABEn) and

is expressed by Equation (2).

BEn ¼ σ2
POE

n
=μPOE

n

σ2
POR

n
=μPOR

n
¼ σ2

POE
n

σ2
POR

n (1)

ABEn ¼ σ2
STOCK

n

σ2
POR

n (2)

The BE involves large economic losses in the supply

chain, by increasing missing sales, obsolescence, and

labor, transportation and storage costs, so it can be con-

sidered a major cause of inefficiencies within SCM

(Disney et al. ).

Lee et al. () showed that there are five main causes

that lead to this phenomenon: (1) errors in demand forecast-

ing; (2) non-zero lead times; (3) order batching; (4) price

fluctuations; and (5) supply shortages. The famous ‘Beer
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Game’, proposed by the MIT and analyzed by Sterman

(), brings evidence that the BE is generated along the

supply chain even if the last three causes are not considered.

Obviously, if lead time was null, the supply from the factory

would instantly respond to customer requirements and the

BE would not appear, and if there were no errors in the fore-

casting, each level would know exactly what it needs, so the

BE would not surge either.

SCM is a very complex problem, which is conditioned

by the interaction of multiple agents, each one of which

has to weight a large number of variables. Thus, modern arti-

ficial intelligence tools have been widely used in order to

optimize the management and to buffer the BE. Next, a

brief literature review on this subject is shown. In the begin-

ning, the Metamorph tool, based on multi-agent

methodology and developed by Maturana et al. (), can

be highlighted. In 2010, Hong et al. designed an ANNs-

based controller and using radio-frequency identification

(RFID) technology (Hong et al. ). Jaipuria & Mahapatra

() developed an advanced forecasting system (ANNs

and wavelet discrete transform) to reduce the BE in a gen-

eric supply chain. Also, the recent and relevant works

carried out by Bahroun et al. (), Saberi et al. () and

Zarandi & Gamasaee () should be mentioned.
THE BE IN REAL-TIME WATER DEMAND
MANAGEMENT

The main hypothesis of this work is that the BE appears in

real-time WDM systems, and therefore it must be controlled

due to the consequences that it could bring to the system.

Under these conditions, the BE in a water supply

network is the increasing variability of the demand trans-

mitted along the same as it moves away from the final

points of consumption. This phenomenon directly causes

the increase of the variations in the water flow conveyed

along the distribution network and also in the increase of

the variations in the water stored in the supply tanks. There-

fore, it tends to oversize the system (distribution network,

supply tanks and treatment equipments), although the infra-

structure oversize is more influenced by other reasons –

reliability and security against unforeseen, but possible,

events. Moreover, the BE generates cost overruns in the
works of water pumping, collection and purification, as

the contracted power is greater when the variability of the

system requirements over time is large. Hence, taming the

BE leads to improvements in management.

Simulation model

To demonstrate the generation of the BE along a real-time

WDM system, this research has considered a simple struc-

ture of a water supply network, which consists of three

main levels interconnected by the distribution piping: (1)

natural sources (catchment points), where water is col-

lected; (2) points-of-use (POU), representing the distributed

water demand; and (3) supply tanks (storage reservoirs),

which receive water from the natural sources and send it

to the POU. Then, a discrete simulation model has been

developed in MATLAB R2014a of a supply system managed

hourly, focused on the supply tanks.

Other assumptions adopted to model the supply system

are the following: (1) stochastic POU demand (see Results

and discussion section, as the same time series has been

used); (2) fixed supply time: 1 hour (on the one hand,

from natural sources to supply tanks and, on the other

hand, from supply tanks to POU); (3) unconstrained catch-

ment, storage and transportation system; (4) water is

pumped to the supply tanks in order for them to store at

the beginning of each hour – order-up-to point – the forecast

plus a security level, with the aim of protecting against short-

age; and (5) non-negative condition of the order quantity

(water cannot be returned to the previous level). Obviously,

it is a simplified model of the reality, but it considers the

main causes that surge the BE in real-time WDM systems.

Next, the mathematical formulation of the model is

described. Water pumped at the end of each hour from natu-

ral sources to supply tanks (WPt) can be expressed as the

difference between the demand forecast for the next

period (dDtþ1) and the water stored in the tanks at the end

of that period (WTt), also considering security level which

must be kept in the tank (SL), by Equation (3). Along the

same line, the water stored in the tanks at the end of each

period (WTt) is the water stored in the tanks at the end of

the previous period (WTt�1), adjusted by the water

pumped in the previous period from natural sources

(WPt�1) – as the lead time is 1 hour – and by the demand
www.manaraa.com
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(Dt), unless this difference is less than 0, according to

Equation (4). In that case, it is not possible to meet all the

demand, and a deficit of unmet demand (UMDt) is gener-

ated, by Equation (5). Furthermore, logically, the water

sent from the supply tanks to the POU (WSt) is the

demand (Dt), unless the water stored at the end of the pre-

vious period (WTt�1) was lower, according to Equation (6).

WPt ¼ maxfdDtþ1 �WTt þ SL;0g (3)

WTt ¼ maxfWTt�1 �Dt þWPt�1; 0g (4)

UMDt ¼ maxf� WTt�1 �Dt þWPt�1ð Þ;0g (5)

WSt ¼ minfDt;Wt�1g (6)

The operational logic of the simulation system is illus-

trated in Figure 1. As mentioned above, it is based on the

supply tanks, and the BE can be observed when comparing

the demand transmitted from POU to supply tanks and from

supply tanks to natural sources. The system is controlled by
Figure 1 | Outline of the simulation system.
the user through an interface, and it is connected to a data-

base with the aim of storing and analyzing the results. It

should be noted that there are two main flows the water

flow, from natural sources to POU and constrained by the

lead time (supply time), and the order flow, in the opposite

direction. The flow chart of the operations in the supply

tanks corresponds to the previous equations.

Simulation results

To calculate the forecast for the next time period (dDtþ1),

moving averages (Holt ) of 3–6 periods and simple

exponential smoothing (Gardner ) with coefficients

0.5–0.9 have been used. In addition, three different tests

with each forecasting method (FM) have been carried out,

as the value of the security level with which the tanks

works has also been modified. Table 1 shows the results of

the 12 simulations using in all cases the same week (ran-

domly chosen) of the time series.

Table 1 demonstrates the generation of BE in the 12

tests (since the ratio is greater than 1 in all cases), in

which different FMs and security levels have been used. In
www.manaraa.com



Table 1 | Results of the simulation

Test FM SL BE ABE UMD

1 MA3 200 1.19 0.18 5,730

2 MA3 400 1.26 0.27 744

3 MA3 600 1.27 0.29 0

4 MA6 200 1.09 0.29 13,336

5 MA6 400 1.19 0.45 4,656

6 MA6 600 1.28 0.58 515

7 ES0.5 200 1.17 0.16 4,439

8 ES0.5 400 1.23 0.23 269

9 ES0.5 600 1.23 0.24 0

10 ES0.9 200 1.19 0.10 1,229

11 ES0.9 400 1.20 0.11 0

12 ES0.9 600 1.19 0.11 0

The columns refer to the number of the test (Test), the FM, the security level of the tanks in

cubic meters (SL), the BE, the ABE, and the UMD in cubic meters.

Figure 3 | Volume of water in the supply tanks for 48 hours (corresponding to Friday and

Saturday) in tests 1, 2 and 3.
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the best situation (test 4), the amplification of the variance of

the demand is 9%. Although not included for the sake of

simplicity, tests carried out with changes in the supply

time or the pumping policy also evidence the existence of

this phenomenon. Thereby, in this real-time WDM system,

there is amplification in the variability of the demand.

The results presented in Table 1 show a straightforward

(and easy to understand) relationship: the higher the secur-

ity level, the lower the UMD. Furthermore, it brings

evidence that the higher the security level, the higher the

variations along the system, which typically results in an

increase of the BE.
Figure 2 | Water received and sent by the supply tanks for 48 hours (corresponding to

Friday and Saturday) in test 3.
The BE generation on the water supply network, by way

of example, can be seen graphically in Figure 2, which rep-

resents the water conveyed between supply tanks and

POU and between natural resources and supply tanks for

2 days of test 3. In it, the amplification of the variance is

27%. Figure 3 displays, for the same time period, the

volume of water in the supply tanks in tests 1, 2 and

3. These variations produce the magnification of the ABE

when the security level increases, although the UMD

obviously decreases. Thereby, the consequences of the BE

in the WDM system are evidenced.
DESCRIPTION OF THE FORECASTING SYSTEM

The forecasting errors are the main cause of the BE. Hence,

a system based on an ANN structure has been developed to

forecast the hourly demand with the aim of minimizing the

errors. The results will be evaluated by comparing them with

the ones provided by statistical methods, which will be

detailed afterward.

ANN forecasting system

ANNs are computational models inspired by an animal’s

central nervous system, which are capable of machine learn-

ing, as well as pattern recognition. They are systems of
www.manaraa.com
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interconnected neurons, distributed in different layers,

which can compute values from inputs. Two characteristics

of ANNs that make them particularly useful for forecasting

time series are the ability to approximate practically any

function (even non-linear ones) and the opportunity for

‘piece-wise’ approximations of the functions. For a more

detailed description of ANNs as a FM and its contrast

with other traditional tools, see Pino et al. ().

In particular, the model used for this study is the non-

linear autoregressive network with exogenous inputs

(NARX), where the next value of the dependent output

signal is forecast (ŷ(t) ¼ cDt) as a regression on previous

values of the output signal (y(t)¼Dt) and previous values

of an independent (exogenous) input signal (xt¼ x(t)). The

NARX model is developed, among others, in the work of

Piroddi & Spinelli (). The software that has been used

is MATLAB R2014a.

Figure 4 shows the architecture of the forecasting system –

it is called multi-layer perceptron (MLP). From a set of

inputs, the system is capable of building a response. In par-

ticular, the program takes not only the previous demands,

but also the hour (ranged from 00 to 23 h), the week day

(from 1, corresponding to Mondays, until 7, corresponding
Figure 4 | ANN architecture of the forecasting system.
to Sundays) and an extra variable, related to the main fea-

ture of the day, which differences working days (1),

Saturdays (2) and Sundays and holidays (3) – due to the

nature of this time series from Monday to Friday, consump-

tion of water remains pretty similar, while it decreases on

Saturday, and keeps falling on Sundays (holidays can be

approximated to Sundays).

MLP are networks that have more than one layer of adap-

tive weights (Bishop ). It has three layers of units taking

values in the range 0–1, and each layer is nourished with the

previous ones. Any number of weighted connections can be

used, but MLPs with two weighted connections are very

much capable of approximating just about any functional

mapping. The MLP can be mathematically represented by

Equation (7), where yt represents the output (forecast), fouter
represents the output layer, finner represents the input layer

transfer function, wxy represents the weights and biases

(i∈ [1, (3mþ 3)] refers to the input neurons and j∈ [1, n]

refers to the hidden neurons) and (z) represents the zth layer.

D̂t ¼ yt ¼ fouter
Xn
j¼1

wð2Þ
1j finner

X3mþ3

i¼1

wð1Þ
ji � xi þwð1Þ

j0

 !
þwð2Þ

10

24 35
(7)
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Figure 5 | Flow chart followed by the forecasting system to make the prediction.
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Figure 5 provides a brief explanation of the structure and

operation of the ANN forecasting system. It makes an hourly

forecast, when it receives the last demand from the measure-

ment equipments and the information is stored in the

database. Then, it reads the database and selects the last

1,008 samples, which correspond to an entire period of 6

weeks (the hourly demands of 42 days). Samples are randomly

divided (except the last 12) into three different groups 70% of

them are classified as training data, for adjusting the network

according to its error; 15% as validation data, used tomeasure

network performance and to halt training when it stops

improving; and the remaining 15% as testing data, which pro-

vides an independentmeasure of network performance during

and after training.

The used training function updates weight and bias values

according to Levenberg–Marquardt optimization, which uses
this approximation to the Hessian matrix in a Newton-like

update (see Moré ). To verify the training of the ANNs

and to avoid overfitting, the early-stopping method (Sarle

) has been used, as the number of training examples is suf-

ficiently large. It presents interesting advantages in terms of

speed and ease of application in comparison with cross-vali-

dation (Kohavi ), which is much more suitable when the

number of examples is low. Training stops when any of

these conditions occurs: the maximum number of repetitions

(100) is reached; the maximum amount of time is exceeded

(10 minutes); the performance gradient falls below the value

defined (10�10); validation performance has increased more

than the times defined (6) since the last time it decreased; or

the scalar value exceeds its maximum value (1010).

In the search of the structure that fits best the time

series, two things are varied by the control subsystem the
www.manaraa.com
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number of neurons in the hidden layer and the number of

delays (hence the number of variables that are considered

to forecast). Therefore, the system chooses at each time

the optimal structure of the network, seeking for a better

performance of the tool than if the same structure was

always imposed.

About the first loop, it should be kept in mind that the

higher number of hidden neurons (n) are chosen, the more

complexity the structure will have, and it requires a higher

time of carrying out. However, this does not always translate

into a better outcome of the system because overfitting

problems are more prone to occur if there are too many

neurons in the hidden layer. The system builds a network

for each one of the different values of the variable from

n¼ 2 to n¼ 20, with jumps of two units.

In addition, another loop is made in order to look for

the combination of delays that best fits the input data. As

the hourly consumption time series shows trend and

double periodicity, the best way of defining a new value

for the curve of water consumption is by choosing the

demands of the previous hours (from y(t� 1) to y(t� 1�m)),

the demands of the previous day at the same hour and the

previous ones (from y(t� 24) to y(t� 24�m)), and the

demands of the previous week at the same day hour and

the previous ones (from y(t� 168) to y(t� 168�m). The

system evaluates alternatives from m¼ 1 to m¼ 8.

To evaluate the performance of the forecasting system,

the criterion of the mean absolute percentage error

(MAPE), introduced by Makridakis (), is used. It can

be expressed by Equation (8), where p is the time horizon

MAPE ¼ 1
p

Xp
t¼1

Dt � D̂t

Dt

�����
����� (8)

The last 12 demands are saved as testing samples, in

order to orientate the double-loop to determine the optimal

ANN architecture at every moment. Therefore, after each

iteration, the system calculates the MAPE of the last 12

demands as an indicator of network performance in recent

hours (fitness MAPE). Once the double-loop process of

building networks has ended, the system chooses the struc-

ture that has generated a minimum fitness MAPE and new

predictions are made with this architecture.
Statistical models

Traditional methods are used to compare their results with

the developed system, and to show the improvements on

the BE reduction. Three statistical techniques have been

used. The system chooses the best of the three at any time

using the same criterion (fitness MAPE minimization).

First, an autoregressive model (AR) is used (Akaike

). The algorithm for computing the least squares AR

model is the forward–backward approach, which minimizes

the sum of a least squares criterion for a time-reversed

model. The second model corresponds to IVAR, which esti-

mates the AR model using the instrumental variable method

(Arellano & Bover ). Both algorithms treat noise differ-

ently. AR assumes white noise, while the IVAR is not

sensitive to noise color. The third one corresponds to the

ARMA model (Jones ). It includes a moving average

component to consider the relation of the series with past

values of the errors.
RESULTS AND DISCUSSION

To evaluate the effectiveness of the forecasting system in the

BE reduction, a simulated time series with the hourly water

demand in 2009 and 2010 in Gijón (a municipality of

300,000 inhabitants in the north of Spain) has been used.

Validated by the municipal water company – real data are

not available as this company still do not carry out an

hourly management – this series was created through the

monthly water demand of the city, a distribution model of

hourly water demand for a city in south-eastern Spain

(Herrera et al. ), and random parameters. The infor-

mation obtained from the literature was used to create a

consumption modulation curve describing the behavior of

the hourly water demand along the different days of the

week. To adjust properly the vertical scale (in cubic

meters), and hence including the long-term trend of the

series, each month’s water demand (known for 2009 and

2010) has been applied. This simulation was run for the

above-mentioned time horizon, adding random parameters

with the aim of slightly modifying the curve at every

moment and creating short-term trends in the series. Holi-

days have also been considered.
www.manaraa.com
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This way, the time series replicates a real hourly water

demand series, which is a complex series with double season-

ality and trend. On the one hand, it has a daily periodicity, as

every 24 hours the series shows a similar structure. On the

other hand, the consumption significantly varies on Satur-

days and Sundays (and on holidays if there are), hence

there is a weekly periodicity (168 hours). Moreover, the

time series does not remain in a constant range, but it exhibits

the above-mentioned trends both in mean and variance.

In this study, different days and hours have been

selected randomly with the aim of evaluating the perform-

ance of the system in different situations. Table 2 presents

the different periods that have been chosen. In its last
Table 2 | Training period (6 weeks) and testing periods (24 hours) of the eight tests that

have been performed

Training period Testing period Testing day

Test From To From (hour) To (hour) Kind

1 24/01/09 06/03/09 0 23 Saturday

2 28/07/09 08/09/09 5 4 Holiday

3 17/12/09 28/01/10 17 16 Working day

4 30/12/09 10/02/10 12 11 Working day

5 10/01/10 21/02/10 4 3 Holiday

6 22/01/10 05/03/10 21 20 Saturday

7 12/03/10 23/04/10 5 4 Working day

8 28/07/10 08/09/10 14 13 Holiday

Table 3 | Results of the simulation

Artificial neural networks Statistic

Test Struct. MAPE (%) BE 100 ABE MAPE (%

1 12-2-1 0.70 0.98 0.59 2.64

2 12-2-1 0.98 1.03 0.86 1.58

3 9-8-1 1.65 1.00 6.71 2.09

4 9-10-1 0.58 1.02 0.57 1.86

5 9-12-1 0.90 1.00 0.99 3.38

6 9-12-1 0.76 0.95 0.92 2.65

7 15-4-1 1.02 1.00 0.76 2.73

8 12-2-1 1.03 1.00 0.83 2.64

The columns contain the MAPE of the forecasting in percentage, the BE generated in the distribu

and when the best statistical model is used to forecast.

In addition, the comparison between both methodologies is displayed through the percentage re

It also includes the ANN structure used by the system to forecast the hourly demand in each t
column, it differentiates between working days (1), Satur-

days (2) and Sundays and holidays (3), according to the

classification above mentioned.

The discrete simulation model described in the third sec-

tion has been used to calculate the BE and the ABE with the

ANN forecasting system in the eight tests. The chosen secur-

ity level in the supply tanks is 500 m3 – this value has been

selected because there would not be UMD in none of the

eight cases.

Table 3 depicts the final results obtained in this research.

They point out, broadly speaking, the huge efficiency of the

ANN forecasting system versus the statistical methods in

the reduction of the BE. As expected, an improvement

in the forecasting MAPE usually implies an improvement

in both indicators of the BE.

The ANN forecasting system leads to the achievement of

minor errors. By selecting at each time the best architecture

of the network, forecasting errors around 1% are obtained

in the tests performed, below those achieved by the tra-

ditional statistical methods. Thus, the BE – that is evident

and a major threat to the WDM system with the statistical

models (the amplification varies between the 11% in test 2

and the 53% in test 5) – experiences a great reduction when

using the ANN system. In other words, this forecasting

system makes the amplification of the variability of the

demand along the supply network non-significant. Similarly,

variations in the water volume at the supply tanks are largely
www.manaraa.com

al methods Reduction

) BE 100 ABE MAPE (%) BE (%) ABE

1.33 10.94 73.48 26.32 18.54

1.11 2.38 37.97 7.21 2.77

1.28 7.89 21.05 21.88 1.18

1.29 7.73 68.82 20.93 13.56

1.53 16.37 73.37 34.64 16.54

1.34 12.65 71.32 29.10 13.75

1.12 5.21 62.64 10.71 6.86

1.33 10.94 60.98 24.81 13.18

tion system and the ABE multiplied by 100, both when the ANN forecasting system is used

duction of MAPE and BE and through the quotient between the ABE obtained in both cases.

est (struct.).



Figure 7 | Variations of the real and the transmitted demand for test 1.

299 B. Ponte et al. | The Bullwhip effect in water demand management Journal of Water Supply: Research and Technology—AQUA | 64.3 | 2015
reduced. This leads to the conclusion that the negative conse-

quences of the BE in the hourly managed water distribution

system are remarkably attenuated with the system that has

been implemented.

Regarding the system’s architecture, Table 3 brings evi-

dence that there is not a direct relationship between the

complexity of the network and the accuracy of their forecasts.

For working days, in most cases, the system finds that the best

architecture corresponds to the selection of the minimum

value of m, so that the number of inputs is usually smaller

(tests 3, 4 and 6) than in weekends and holidays. However,

if the number of hidden neurons in each test is analyzed, it

can be noted that weekends and holidays generally need

fewer neurons in the hidden layer (tests 1, 2 and 8).

By way of example, test 1 is a clear example in which the

results of the ANN forecasting system significantly

decreases the MAPE obtained with the statistical methods,

and as a result the BE is minimized. Figure 6 shows the

real consumption and the two forecasts. The ANN system

(0.70% MAPE) offers better performance (2.64% MAPE of

the best statistical model). The graph shows that it captures

very accurately the periodicity and the trend of the con-

sumption. Meanwhile, Figure 7 displays the difference

between the POU’s consumption (from supply tanks to

POU) and the transmitted demands (from natural sources

to supply tanks), one when ANNs are used and the other

with statistical methods. It shows that the distortion intro-

duced to the WDM system is much smaller with the

ANNs, so that the tank requirements vary much less. The
Figure 6 | Differences between the demand and the two forecasts for test 1.
figure shows that the accuracy of the forecasting system

causes the water conveyed between natural resources and

supply tanks to approximate closely to the POU’s consump-

tion, but displaced – the supply time is the time difference

between them. Thus, the BE is greatly reduced.
CONCLUSIONS AND FUTURE RESEARCH LINES

In this paper, the BE is studied for the first time in the con-

text of water supply networks. Even though it was not a

relevant concept in a traditional long-term WDM system,

the BE is emphasized nowadays with new approaches

based on hourly management, that look for efficiency optim-

ization. Under these circumstances, demand forecasting is

an essential practice and supply time must be taken into

account. As a consequence of both, the BE comes out.

Through a discrete simulation model, its generation has

been shown, as well as the consequences it has on a real-

time system system’s oversize, risks of shortage, and

energy expenditure increase. Therefore, the BE should be

considered as a head cause of inefficiencies in WDM.

One way to reduce the BE and to mitigate its damage is

the use of advanced forecasting tools. Hence, this research

has developed a double-loop forecasting system which

chooses at each time the most appropriate architecture of

the network (both the inputs to be considered and the neur-

ons in the hidden layer). With this ANNs-based system,

very-low errors in forecasting the hourly demands are
www.manaraa.com
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achieved in comparison with traditional statistical

methods. The tests performed at random moments of

time point out that the MAPE reduction leads to a large

decrease of the BE. Thereby, the use of the intelligent fore-

casting system reduces the distortion induced in the water

supply network, so that the inefficiencies in WDM are

significantly mollified.

There are two main lines of future work that this

research group is planning as next steps on this topic. The

first is to extend this model to a larger noise conditions scen-

ario, as well as to use a more complex supply structure.

Considering these new factors can provide insights to

other relevant insights on this issue. More specifically, it is

planned to study the BE in WDM from a supply approach,

as many real systems are greatly influenced by hydrological

uncertainty (could a reverse BE exist?). The second line is to

integrate this forecasting system within a larger system

aimed at optimizing the management.
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